
NOTICE:

The Arnor products for the Amstrad CPC and Amstrad PCW are © Copyright
1997-2003 Brian Watson. All rights reserved.

For support and printed manuals for these products please contact Brian at:

Brian Watson,
"Number Six",
Windmill Walk,
Sutton,
ELY
Cambs
CB6 2NH
ENGLAND

or

brian@spheroid.demon.co.uk

This manual has been reproduced with his permission.

Manual supplied by Brian Watson.
OCRed by Kevin Thacker.

UTOPIA

16K UTILITIES ROM

AMSTRAD CPC464
CPC664 & CPC6128

© WACCO 1995
Harrowden, 39, High Street,

Sutton, ELY, Cambs
CB6 2RA

Telephone: 01353 777006

UTOPIA

16K UTILITIES ROM

AMSTRAD CPC464 CPC664 & CPC6128

Introduction

UTOPIA is a collection of useful commands relating to many aspects of Amstrad computing.
Although sold as a single product. UTOPIA is really a 'library' of programs, all contained on a
single ROM chip for convenience. Just like a library of books, UTOPIA's commands can be
classified by subject:

1. Commands useful to BASIC programmers. These include find and replace, move lines,
and various commands displaying useful information such as the currently defined variables.

2. Commands relating to files on tape or disc, such as TYPE, DUMP, VERIFY and COPY.
3. Disc users utilities. All the essential facilities for the disc user are contained in the

ROM. With UTOPIA installed there is no longer any need to use your CP/M disc to format or
copy a disc.

4. Commands relating to sideways ROMS and external commands. These allow all
sideways ROMs and all external commands to be listed and also the switching off of selected
ROMs.

5. Commands to echo all screen output to either the printer or a file.

Copyright (c) Arnor Ltd., 1985 NOW © WACCO 1995 Issue 2, revised 1986 (v1.25)

CP/M is a registered trademark of Digital Research Inc.
AMSTRAD is a registered trademark of Amstrad Consumer Electronic, plc.

All rights reserved. It is illegal to reproduce or transmit either this manual or the accompanying
computer program in any form without the written permission of the copyright holder. Software
piracy is theft.

The UTOPIA program was developed using the MAXAM assembler ROM.
This manual was written on the PROTEXT word processor.
MAXAM and PROTEXT are both available in ROM from WACCO.

INSTALLATION

UTOPIA is supplied in a 16K EPROM which can be fitted into any available ROM expansion
board. You may find that the legs of the EPROM will need straightening a little in order to fit it.
Do this with extreme care by holding the EPROM in the centre (avoid touching the legs) and
pressing the side of the legs against a flat surface. Keep the EPROM away from sources of
electrostatic charge such as the monitor screen.

ROM numbers

Each ROM, when installed must have a unique ROM select number so that the firmware
may access it. UTOPIA is a background ROM, which means it provides facilities that can be
used by other ROMs, such as BASIC. The number associated with a background ROM must
lie between 1 and 15 (with the 1.0 firmware as on the CPC464 it must be between 1 and 7).
However UTOPIA must be installed with a select number between 1 and 6. This is because
AMSDOS occupies ROM 7, and UTOPIA must have a lower number in order to intercept some
of the AMSDOS commands. Similarly, UTOPIA should have a lower select number than that of
MAXAM, if fitted.

It you have the Arnor AD-1 adaptor with MAXAM or PROTEXT that will take ROM 5.
Select one of the remaining numbers for UTOPIA - this will be done by choosing an
appropriate socket and, possibly, fitting a link. Refer to the documentation accompanying your
ROM board for details.
When your UTOPIA ROM is installed, switch on and type '|HELP'. This will list all ROMs. If
UTOPIA is listed then all is well and all the commands are ready for use. If not, or if the
message 'Unknown command' is displayed, check that you have not chosen a ROM select
number already occupied by something else.

USING UTOPIA
Command entry

UTOPIA's facilities are all available from BASIC, MAXAM or PROTEXT as 'external
commands'. They can also be used with other well-written programs. The commands are
entered by typing a vertical bar ‘|’ followed by the command name. The ‘|’ symbol is produced
by holding down SHIFT and pressing @.

Most of the commands take one or more parameters (such as filename, string to find).
These parameters can be entered in one of two ways:

(i) after the command name separated by commas,
(ii) by pressing ENTER (or RETURN) after the command name, in which case

UTOPIA will prompt for all required parameters.
Method (ii) allows a command to be used if you've forgotten what parameters it takes. The
other advantage is that it allows the entry or string parameters easily from BASIC. Method (i)
Can be very quick and convenient, especially if used with MAXAM or PROTEXT which allow
free format entry of external commands.

Many of UTOPIA’s commands can be used from within a BASIC program, but it should be
noted that such a program will not then run on a machine which does not have UTOPIA fitted.

Note for CPC464 users
On the CPC464 it is not possible to enter string parameters on the same line as the command
as shown in the manual. Either let UTOPIA prompt for all parameters or use the commands
from MAXAM or PROTEXT.

The HELP command can be used to list all UTOPIA’s commands on the screen. '|HELP'
lists all sideways ROMs, including UTOPIA, together with their 'ROM numbers'. Then '|HELP,n’
where n is UTOPIA's ROM number will list all the external commands that are available. HELP
also displays the UTOPIA version number, which should be quoted in any correspondence.

If you have ROMs produced by different companies you may find that there to a conflict of
command names. Where two or more ROMs each have a command with the same name, the
command in the lower numbered ROM will normally take priority. UTOPIA includes a feature to
override this if another ROM to intercepting a command meant for UTOPIA. To do this type the
command |U. You will than be asked for the name, after which the command will be executed
as normal.

As far as possible UTOPIA follows BASIC in the use of the ESC key. So for virtually all

commands, pressing ESC once causes the command to pause and a second press aborts the
command (another key resumes it). However when commands are accessing the disc the
computer does not scan the keyboard so it may be necessary to hold the ESC key down for
about half a second.

Filenames

If a filename is entered without an extension, the AMSDOS convention is followed - if the file
is not found the suffix .BAS is added. If this is not found the suffix BIN is tried. This applies to
the following commands:

ACCESS COPY DELETE DUMP INFO LIST LOAD TYPE VERIFY VTEXT
It does not apply to ERA and REN, these work exactly as the AMSDOS command and are

merely intercepted to allow easy parameter entry from BASIC.
The command SAVE creates a file with a .BIN suffix if none is given.

Ambiguous filenames

Many commands allow the use of ambiguous filenames. An ambiguous filename contains
one or more wildcard characters. The wildcard characters are:

? this will match any single character in a filename
* this will match any string of characters in a filename.

Examples of use of wildcards:
. all files.
*.BAK all backup files.
?AT all 3 latter filenames ending in AT (e.g CAT, MAT).

Function keys

UTOPIA is present in the machine from the moment you switch on, and all the commands are
instantly accessible. In fact, by the time BASIC displays 'Ready' for the first time UTOPIA has
already done several things. These are:

1. It determines whether discs are being used. If so the expansion string produced by
pressing CTRL and ENTER (this means the small ENTER key on the 464 and 664)
is changed from RUN" to RUN"DISC. This allows the use of an auto-boot facility with
disc. Save a BASIC program called 'DISC' which performs any required action (e.g.
running a BASIC or machine code program, setting pen and paper colours), then in
future you just need to insert the disc and press CTRL-ENTER.

2. Expansion tokens 150 to 159 are associated with the keys f0 to f9 (0 to 9 at the right
of the keyboard) when CTRL is pressed.

3. The expansion tokens 141 to 149 are associated with the keys f1 to f9 (1 to 9 at the
right of the keyboard) when SHIFT is pressed.

4. The expansion tokens 150 to 159 have strings assigned to them. The affect of 2 and
3 is to define the following function keys:

CTRL-f0 INK 0,13:INK 1,0:BORDER 10
CTRL-f1 LIST
CTRL-f2 MODE 2
CTRL-f3 |CAT
CTRL-f4 |HELP:|HELPR
CTRL-f5 |TOKENS
CTRL-f6 |STATUS
CTRL-f7 |PROTEXT
CTRL-f8 |M,2
CTRL-f9 |ERA,”*.BAK”

CTRL-f0 produces colours suitable for reading text on a colour monitor.
CTRL-f7 and CTRL-f8 are only of use to owner of the PROTEXT word processor and the

MAXAM assembler respectively. Both of these acclaimed programs are available on ROM and
disc from WACCO.

Note that if you have a program which sets up key expansions, the error ‘Improper
argument’ will be displayed. This is because the UTOPIA key definitions use all the necessary
storage space. In this case use the command ‘|NOKEYS’ which cancels the UTOPIA
definitions.

THE COMMANDS IN DETAIL

The major part of this manual details each command, in alphabetical order. The following
headings are used, though they are not all used in every case:

1. Syntax: The parameters required by the command are listed on one line - but don't
forget you can just press ENTER (or RETURN) after the name to obtain self
explanatory prompts for all parameters. The following conventions and abbreviations
are used in the syntax descriptions:

<>: an item enclosed in angle brackets is a description of the parameter. Other letters etc,
should be typed literally as shown.
(): an item enclosed in parentheses is optional.
2. Description: The use and effect of the command explained.
3. Examples: Examples illustrating the use of the command and the output produced

by the command.
4. Technical notes: These notes are included for those who are interested. They are

concerned with how the command works rather than how to use the command. They
may therefore assume certain knowledge about the workings of the Amstrad
computer. Don't worry though - they can be safely ignored.

5. Related commands: A list of commands that are either used in association with the
command just described, or whose description throws some light on its use.

ACCESS - Set access attributes (disc only)

Syntax: ACCESS <ambiguous filename> (<attribute>)

Attributes: P … set file(s) to Read-Only
 U … set file(s) to Read/Write
 S … set file(s) to SYS status
 D ... set file(s) to DIR status

Every file stored on disc has two ‘access attributes’. The first of these simply says whether
the file is protected against alteration or deletion. When a file is created its access attribute is
'Read/Write'; that is it is not protected. The file can be protected by using the ACCESS
command with parameter ‘P’. This sets the file to 'Read-Only'. In order to save a new file or
delete the file, first use ACCESS without the parameter 'P'. Protected files are marked in the
catalogue with an asterisk.

The second attribute sets the DIR/SYS status of the file. Initially all files are DIR status,
which means they are listed in the directory. If the file is set to SYS status (using the parameter
‘S’), the file is no longer listed by CAT or DIR. The parameter ‘D’ will return the file to DIR
status.

Examples:

1. |ACCESS,"myprog",”P”
Sets file 'myprog' to Read-Only

2. |ACCESS, "*.BAS", "P"
Set all BASIC program files to Read-Only.

3. |ACCESS,"*.*"
Set all files to Read/Write.

4. |ACCESS,”secret.*”,”s”
Hide all files so they are not displayed by CAT

Technical note:

Use of ACCESS is equivalent to use of the CP/M command STAT.

Related commands: CAT, COPY, DELETE, ERA, REN

ARRAYS - List currently defined arrays

Syntax: ARRAYS

A complete list of all defined arrays is produced. The dimensions of each array are given.
The arrays are listed in the following order: all real arrays in the order they were defined, all
integer arrays in the order they were defined, all string arrays in the order they were defined.
Only arrays that have been defined by the program are listed, not arrays that appear in the
program but have not been used. The type of each array is indicated by the appropriate type
marker: ! for real, % for integer, $ for string.

Example:

|arrays
VECTOR! (9)
A$ (13,6)

Related commands: FNS, VARS

C - Calculate value of expression

Syntax: C

This command always prompts for an expression. The expression must contain the
following: integer constants expressed in decimal, hexidecimal (prefixed by '&'), binary
(prefixed by '%'), and the operators +, -, *, /. The result is evaluated modulo 65536, that is the
two least significant bytes of the result are displayed. The result is displayed in two ways - in
hexadecimal and signed decimal. If the result is greater than 32767 the result is also shown in
signed decimal form. Calculation is from left to right.

Example:

The BASIC expression evaluator is unable to cope with certain hexadecimal calculations
because it always treats integers as signed numbers. The C command avoids this problem.

|C
Expression: &9a15-&7858
Value is: &21BD = 8637

CALL - call machine code routine

Syntax: CALL <address> (<a>) (<bc>) (<de>) (<hl>)

The routine at the specified address is called, using any parameters to set the values of the
registers A, BC, DE, HL (in that order). Some or all of the register values may be omitted, in
which case those registers are set to zero. On return from the routine the register values are
displayed.

Examples:

This command is useful for investigating the effect of machine code routines (especially the
firmware routines) without the need to assemble any code. This is not usually possible from
BASIC because the BASIC 'CALL' command does not allow values to be returned.

6. |CALL,&BBA5,241
Returns with HL containing the address of the character matrix for the ASCII code 241.
7. |CALL,&BD2A,68
Returns with A containing the character or token that the TAB key is translated to. (68 is
the key number of the TAB key).
8. |CALL,&BB87,0,0,0,&908
Checks whether the position (row 8, column 9) is in the current window, and alters HL if it
is not.

CAT – Catalogue files

Syntax: CAT (<drive>)

CAT is almost exactly the same as the BASIC command CAT. The main advantage for disc
users is that the drive to be catalogued may be specified, allowing the cataloguing of drive B
without altering the default drive. The drive may be specified as “A” or “B”, or as 0 or 1.

Note: CAT will use the AMSDOS commands A and B as necessary to select the required
drive, and afterwards restore the previous setting. Thus if the currently selected drive has no
disc in it an error will occur, in this case press C to cancel and note that the default drive will
have changed.

Examples:

1. |CAT Catalogue current drive
2. |CAT,1 Catalogue drive B

Technical note:

The BASIC command CAT calls CAS IN ABANDON and CAS OUT ABANDON, thus
abandoning any open tiles. This is not necessary though, so |CAT only calls CAS IN CLOSE
for tape, and does not affect either stream for disc.

CDUMP – character screen dump

Syntax: CDUMP

Any text on screen will be copied to the printer. Graphics will be ignored. CDUMP will work
on any printer.

COPY - copy file (tape or disc)

Syntax: COPY (<new filename>) <old filename>

This will copy a file from the current input filing system to the current output filing system. If
<new filename> is emitted, the new copy will be given the same name as the old file. If copying
from tape both names may be omitted - the first file will then be copied. It copying from tape to
disc the name will he truncated if it is too long. Any type of file may be copied.

Note: COPY closes any open files.

Examples:

1. Copying from tape to tape or disc using the same name.
|TAPE.IN
|COPY

2. Copying a named file from disc or tape to tape.
|TAPE.OUT
|COPY,”progfile”

3. Copying a file and renaming it
|COPY,”newname”,”oldname”

4. Copying file from drive A to drive B
|COPY,”b:maxam”,”a:maxam”

Technical notes:

COPY copies the file byte by byte using CAS OUT CHAR. It is requires 2K of free memory.
If copying onto tape the load address of the file will be lost. This is because the firmware

does not permit the setting of the load address field in the file header. This does not APPLY if
copying onto disc because AMSDOS allow the load address field to be set.

Related commands: DELETE, LOAD, SAVE

COPY - copy file or files (disc only)

Syntax: COPY <source drive> <destination drive> <ambiguous filename>

This is a fast copy for disc users, equivalent to the CP/M function ‘FILECOPY’. All files
matching the ambiguous filename are copied from the disc in the source drive to the disc in the
destination drive, the names being displayed as the files are copied. If using a single drive
system prompts are displayed when a disc needs to be inserted. The two discs need not be of
the same format – the disc formats are detected automatically. This can be used to copy an
entire disc when DISCCOPY will not work (enter |COPY,”A”,’B”,”*.*”).

This command requires approximately 21K of memory to operate. If there is not sufficient
free memory the user memory will be overwritten – before this occurs a warning message will
be displayed and you must reply ‘Y’ to the question ‘Are you sure (y/n)?’;. In this case any RSX
commands that have been loaded from tape or disc will be lost.

COPY will do nothing if the destination disc contains a file of the same name which is write
protected.

Note that files larger than 16K will be copied in 16K blocks so the disc will have to be
inserted more than once for a single file.

If |COPY is typed with no parameters, this version is used if copying from disc to disc,

otherwise the single file version of COPY is used (see above).

Technical notes:

This version of COPY works in an entirely different way to the first version. It reads the disc
directory and copies files directly by loading disc sectors into memory and writing them out on
the destination disc. Any previous f ile of the same name will be renamed with a .BAK suffix as
you would expect. If the operation of COPY is aborted or an error occurs (‘Disc full’ or
‘directory full’) the part copied file will be left with the suffix .$$$ and the original file will remain
intact. Any files already on the disc that match the ambiguous filename but have a .$$$ suffix
will be deleted.

Related commands: DELETE, DISCCOPY

DEDIT - Disc editor

Syntax: DEDIT <drive> (<track>) (<sector>)

DEDIT allows the examination and direct alteration of the contents of a disc. If a sector
number is specified, DEDIT will attempt to read that sector. Otherwise it will determine the
format of the disc and read the first sector if the required track. If no track number is given,
DEDIT assumes track 0. The top line of the screen will show the drive (A or B), the track
number and the sector number. Sector numbers depend on the format of the disc but are
always determined automatically. For reference though they are as follows:

System or Vendor format: &41 to &49 (9 sectors per track)
Data only format: &C1 to &C9 (9 sectors per track)
IBM format: 1 to 9 (8 sectors per track)

Each sector is 512 bytes long and the display shows half of a sector at a time in 80 column
mode. Pressing SHIFT with the cursor up and down key, swaps between the two halves of the
sector. The left part of the screen shows the hexadecimal representation and the right part
shows ASCII. Each can be edited, simply by overtyping the displayed values.

Use CTRL with the cursor keys to move between sectors as shown below.
When you have finished editing a sector you will need to write the sector to the disc. This is

not done automatically so if the alterations are displayed on the screen and you move to a new
sector, the disc will not be changed. To save the changes press CTRL-COPY. The current
sector as it is displayed on the screen is copied to the disc. The next sector is then read and
displayed.

Corrupted discs etc.

If a read error occurs the message "Unable to read sector move to new sector or press ESC'
is displayed. This usually means that DEDIT was trying to read a non-existent sector - this will
happen it you enter a sector number corresponding to a different disc format, or it you are
trying to access a protected disc. If neither of these are the case then you probably have a
corrupted disc. It may be that there is just one bad sector though, in which case you can use
the commands below to move to another sector or track. Before consigning the disc to the bin,
reset the machine completely and try again: also try other discs in the case the drive is faulty.

DEDIT offers the following commands:

TAB switch between hex and ASCII editing.
SHIFT <cursor-up> move to top half of sector
SHIFT <cursor-down> move to bottom half of sector.
SHIFT <cursor-left> move to start of line
SHIFT <cursor-right> move to end of line
CTRL <cursor-up> move back one track
CTRL <cursor-down> move on one track.
CTRL <cursor-left> move back one sector
CTRL <cursor-right> move on one sector.
CTRL-COPY write sector to disc.
COPY copy sector to or from memory. The prompt “Copy to” will be

displayed. Enter a memory address which is the start of a 512
byte (&200 byte) area of memory. The current sector will be
copied to this address. If you press ENTER (or RETURN) the
prompt will toggle between “Copy to” and “Copy from”. Enter a
number when “Copy from” is displayed and the 512 bytes at that
address will be copied into the sector buffer –it can then be
edited and copied to the disc, thus allowing individual sectors to
be written.

ESC finish.

Examples:

1. It a file is accidentally deleted it may (with the appropriate knowledge of the CP/M filing
system) be restored using DEDIT.

2. It a disc becomes corrupted it may be possible to restore some or all of a file by
copying the sectors into memory, and then using SAVEA to save the recovered file onto
another disc. For example, if a file consists of 3 sectors and the sectors can all he read by
DEDIT, copy the sectors to &1000, &1200, &1400 and then enter the command
'|SAVEA,”file",&1000,&600’. If you have MAXAM or PROTEXT you can then edit the recovered
file.

Related commands: FORMAT, MEDIT

DELETE - Delete file or files (disc only)

Syntax: DELETE <ambiguous filename>

DELETE is similar to the AMSDOS command ERA, the difference being that instead of just
deleting each file matching the ambiguous filename, the filename is displayed and the question
'Delete (y/n)?' is displayed. If Y is pressed the file will be deleted, otherwise it will not. If you
realise you have made a mistake before DELETE has finished, press ESC and no changes will
be made. Otherwise all the files you marked for deletion will be deleted together after all
filenames have been displayed. Files set to Read-Only, may not be deleted.

Related command: ERA

DISCCOPY - Copy disc

Syntax: DISCCOPY <source drive> <destination drive>

DISCCOPY will copy a disc using one or two drives. The question 'Are you sure (y/n)?” will

ask you to confirm that the copying is to go ahead. If any key other than Y is pressed the
copying will not proceed. Any format of disc may be copied. If the destination disc is
unformatted, or is of a different format it will be re-formatted.

The use of this command will overwrite user memory and any RSX that has been loaded
from disc will be lost.

Examples:

1. Copying with a single drive
|DISCCOPY, "A”, "A"

2. Copying with a dual drive system
|DISCCOPY, "A”,”B”

It is recommended that you always copy from drive A to drive B and NEVER the other way
round, and also that whilst copying the source disc is write protected. If these precautions are
not followed it is almost inevitable that you will at some time copy the backup disc onto the
working disc!

Related commands: COPY, DISCTEST, FORMAT

DISCTEST - Test disc for read errors

Syntax: DISCTEST <drive>

DISCTEST simply reads every sector of the disc in the specified drive. If the disc is badly
formatted or corrupted a 'Read Fail' will occur at some point. If this occurs try re-formatting the
disc. If DISCTEST succeeds the message 'Disc formatted correctly is displayed.

The operation of DISCTEST is carried out automatically by DISCCOPY and FORMAT.

Related command: FORMAT

DUMP - Dump file contents

Syntax: DUMP <filename>

DUMP will read a file from tape or disc and display the contents of the file on the screen.
Both hexadecimal and ASCII representations are shown.

Note: DUMP closes the input file if there is one.

Technical note:
When used on disc DUMP treats soft end of file (&1A) as a character in the file and

continues to the hard end of file that is the end of a 128 byte block.

Related commands: LIST, TYPE

ERA - Erase file or files (DISC only)

Syntax: ERA <ambiguous filename>

This is the AMSDOS command and so is identical in affect and use to that described in the
Amstrad manual. The command is, however, intercepted and will prompt for parameters in the
usual way, thus allowing easy deletion of files from BASIC.

ERA will also warn you if you attempt to delete all files, as CP/M (but not AMSDOS) does.
Note: ERA will only be intercepted if UTOPIA is fitted with ROM select number less than 7.

Related command: DELETE

FIND - Find tokenised string in BASIC program

Syntax: FIND <string>

Tokenising

The FIND command will search for any string of BASIC text in the current BASIC program.
In order to use FIND to the best affect it is necessary to understand a little about how BASIC
stores programs. It would be very simple to search for a string if programs were stored exactly
as you type them in, but they are not. For reasons of speed and compactness BASIC takes the
lines of program as you enter them and converts them into a special code. This operation is
called 'tokenisation’. So for example if you enter the command 'PRINT' in a program, BASIC
does not store the 5 letters of ‘PRINT', but instead the single number (or ‘token’) &BF. Similarly
every BASIC keyword has a token. BASIC also stores numbers and variables that occur in
programs in a special way.

What this all means is that when you enter a string to be found, it must be tokenised in
exactly the same way before beginning the search.

ASCII search

There are times, though, when you do not want the string to be tokenised before searching,
for example to search for string constants or items in REM or DATA lines. FIND will carry out
an ASCII search if you enter ‘N’ in response to the question ‘Tokenise (y/n)?’. Any other
response will cause a tokenised search.

Wildcards are allowed in the string for an ASCII search. A wildcard is a character which will
match any character in the BASIC program text. A wildcard is specified in the string by typing a
question mark (‘?’). Any number of wildcards may be used.

Example: |FIND,”f??e” Finds all 4 character ASCII strings starting with ‘f’ and ending with ‘e’.

Restricting the search range
The search operation can cover the entire program or any section of the program. Before

searching you will be prompted ‘Start at line:’ and ‘Stop at line:’. To search the entire program
just press ENTER or RETURN in response to each, otherwise enter the first and last line
numbers of the section to which you want to restrict the search.

The line number where the string occurs is listed each time the string is found.
FIND is case sensitive; that is letters typed on lower case will only match lower case letters

in the program, and capitals will only match capitals.

Notes:

If the string being searched for is very short (1 or 2 characters) it may sometimes appear to
find the string wrongly. In fact it is finding the string in the BASIC text where it is part of a
longer token, such as a value of a variable.

Related commands: REPLACE

FNS - List currently defined functions

Syntax: FNS

The names of all functions and the line numbers in which they are defined are listed. The
type of the function is also indicated by the type marker after the name: ! for real, % for integer,
$ for string.

Note that only defined functions are listed so FNS should be used after running a BASIC
program.

Example:
|fns
 START! Line 1000
 ENTER$ Line 1250

Related commands: ARRAYS, VARS

FORMAT - format a disc

Syntax: FORMAT <drive> (<format type>)

FORMAT does the same as the CP/M utility ‘FORMAT'. The format type is a single letter
identifying one of two formats:
V: Vendor Format. This is the default, and is the same as the System Format except that the
CP/M system tracks are left blank. This format gives 169K per disc.
D: Data Format. This has no system tracks and gives 178K per disc.
The default if neither V nor D is specified is Vendor Format.

Technical note:
Discs are formatted in the recommended way with 2 to 1 sector interleave.

Related commands: DISCCOPY, DISCTEST

GDUMP - graphic screen dump

Syntax: GDUMP

A shaded screen dump which can be used in any mode, and produces an accurate picture of
the screen on the printer. In mode 0, 16 shades are used to represent the 16 colours on the
screen, 4 shades are used in mode 1, and black and white in mode 2.

GDUMP works on any EPSON-compatible printer, including the AMSTRAD DMP 2000, all
EPSON printers, CANON printers and the KAGA TAXAN.

HELP - list sideways ROMs or external commands

Syntax: HELP (<rom number>)

HELP with no parameter will list sideways ROMs. All foreground and extension ROMs will
be listed. Those background ROMs that have been initialised are listed. This means that if
ROMOFF has been used to turn off some ROMs then only those that are available for use will
be listed.

The information given is: ROM select number, ROM name, version number, ROM type, and
for a background ROM the address of it’s upper workspace area.

This information can than be used to list the commands provided by any background ROM.
Enter the selected number of the required ROM as the parameter for HELP and all the
commands will be listed.

Technical note:

The ROM name is taken from the name of the initialisation command, that is the first name
in the name table. The version number is taken from bytes 1 to 3 of the ROM. Commands such
as the AMSDOS commands CTRL-A to CTRL-I are not listed.

Example:
|HELP
|HELP,n lists commands for ROM n
|HELPR lists RSX commands
ROM 0. BASIC 1.10 foreground
ROM 1: UTOPIA 1.25 back &A2F4
ROM 2: PROTEXT 1.00 back &A3F8
ROM 5. MAXAM 1.10 back &A5FC
ROM 7: CPM ROM 0.50 back &A700

|help,5
ROM 5: MAXAM 1.14 back &A5FC
 MAXAM ASSEMBLE
 ASSEM CAT
 CLEAR FIND
 HELP M
 MAXOFF MODE
 MSH MSL
 RAMON RAMOFF
 MCLEAR MFIND
 MHELP

Related commands: HELPR, ROMOFF

HELPR - list RSX command.

Syntax: HELPR

This lists all external commands provided by RSXs that have been loaded from tape or disc,

in the same way that HELP,n lists external commands provided by background ROMs.

Related command: HELP

INFO - display information about file or files

Syntax:

INFO (tape only)
INFO <ambiguous filename> (disc only)

The information displayed is taken from the file header. When used on tape all standard files
are listed, on disc all files matching the ambiguous filename (so, in particular, INFO *.* will list
all files on the disc). Note that ASCII files have no header and zeros will be shown.

The information listed 1isted is as follows:

1. File type. The same characters shown by CAT on tape:
* is ASCII, & binary, $ unprotected BASIC, % Protected BASIC.
2. Load address. The address in memory to which the file will be loaded by default.
3. Logical length. The length of the file as stored in the file header.
4. Entry address. For machine code programs, the address at which execution is to

begin after the file has been loaded.
5. (Disc only) Size. The actual size of the file on the disc. This is listed for all files,

whether they have a header or not. This will be different to the logical length
because the size includes the size of the header itself. The size is a multiple of 128
bytes, the smallest unit CP/M handles.

All these numbers are shown in hexadecimal.
Note: INFO closes the input file if there is one.

Example:
|info,”*.*”
 LOAD LOGL ENTRY SIZE
A:DISC .BAS $ 0170 006A 0000 0100
A:DISC .BIN & 9000 2182 9156 2280
A.REPORT . * 0000 0000 0000 5E80

Related command: CAT

LINK - link BASIC program

Syntax: LINK

BASIC’s internal pointers are set up correctly for the program in memory. BASIC variables

are cleared. This can be used to recover programs that you have protected by mistake.

Example:

|LOAD,”filename”
|LINK

Related commands: LOAD

LIST - list ASCII file

Syntax: LIST

LIST will read a file from tape or disc and list the contents on the screen, numbering the
lines. Tab characters are acted upon, taking tab positions at every eighth column.

Note: LIST closest the input file if there is one.

Technical note:

If the file in of type ASCII, LIST stops at a soft end of file (&1A).

Related commands: DUMP, TYPE

LOAD - load a file into memory

Syntax: LOAD <filename> (<load address>)

This LOAD command has much greater use than the equivalent BASIC command, which
only operates with binary files, and only allows files to be loaded at an address greater than
HIMEM. Here there is no restriction on either file type or address, and the command is of
particular use in MAXAM for loading machine code or other files.

The file is loaded at the specified address, or, if the address is omitted, to the load address
from the file header. In the case of ASCII files there is no header so an error message will be
given if no load address is specified.

The load address to not checked in any way, so ill-chosen addresses may cause a system
crash.

Note: LOAD closes the input file if there is one.

Examples:

1. |LOAD,”binary”
Load file called “binary” at the address in the header.
2. |LOAD,”ascii”,&3000
Load file called “ascii” at &3000.

Related commands: LINK, SAVE, VERIFY

MDUMP – memory dump

Syntax: MDUMP <start address> (<end address>)

MDUMP displays the contents of memory in both hexadecimal and ASCII. If no end address
is specified it will continue to the end of memory, &FFFF. Usually MEDIT is more useful for
examining memory contents, but MDUMP is needed in conjunction with PRINTON to send a
memory dump to the printer.

Example:

|MDUMP,&170
Lists the memory area containing the BASIC Program.

Related commands: MEDIT

MEDIT - memory editor

Syntax: MEDIT <address> (<bank>)

Examination and direct alteration of memory contents are possible with MEDIT. When the
command is entered, the whole screen is used to display an area of memory with the selected
address in the centre. Hexadecimal and ASCII representations are shown, and the contents
may be altered simply by overtyping what is shown on the screen. Pressing TAB will switch
between hex and ASCII editing modes.

MEDIT offers the following commands:

TAB switch between hex/ASCII editing modes.
SHIFT <cursor-up> move to top of screen.
SHIFT <cursor-down> move to bottom of screen.
SHIFT <cursor-left> move to start of line.
SHIFT <cursor-right> move to end of line.
CTRL <cursor-up> move back one screenful.
CTRL <cursor-down> move on one screenful.
CTRL <cursor-left> move to top left.
CTRL <cursor-right> move to bottom right.
ESC finish

Editing the second bank of memory (CPC6128 or RAM expansion)

The second parameter of MEDIT specifies a bank select request. The 4 extra 16K blocks of
memory on the CPC6128 are denoted 4,5,6 and 7. <bank> may be between 4 and 7 and
causes the specified block to be switched in at &4000 and for the duration of the MEDIT
command.

e.g. |MEDIT,&4000,7 to edit block 7.
If you have a RAM expansion fitted that is compatible with the CPC6128 bank switching

then MEDIT will also read this. The bank select request in this case can be any number from 4
to 63, depending on the amount of RAM that you have fitted.
Note: if a number less than 4 is used as a parameter then 4 is added to it before switching the
memory. Thus |MEDIT,1 does the same as |MEDIT,5

Related commands: DEDIT, MDUMP

MOVE – move BASIC lines

Syntax: MOVE <first line> <last line> <destination line>

It is often useful to be able to move a section of a BASIC program when reorganising or
tidying up your program. MOVE takes three parameters, all of which are BASIC line numbers.
The first two line numbers define the block which is to be moved. The line numbers specified
need not exist: if the first number does not exist the block is taken to start at the first line after
that specified: if the second number does not exist the block is taken to end at the last line
before that specified.

The destination line determines where the block is to be moved to. The block is inserted
after the line. If the line does not exist the block is inserted at the point where the line would
have been.

After the block has been moved the line numbering will be wrong because the line numbers
are not altered. So after using MOVE it is essential to renumber the program. The RENUM
command may not always renumber all references to moved lines. Any reference not
renumbered will be listed as ‘Undefined line’, and must be corrected manually.

Example:

MOVE 200,340,1200
RENUM

NOKEYS

Syntax: NOKEYS

Clears the expansion tokens that UTOPIA defined on initialisation. This can be useful at the
start of a program that defined function keys because there would otherwise be insufficient
room in the expansion string buffer for further definitions. CTRL-ENTER still gives RUN”DISC,
this is not reset. Use ‘CALL &BB03’ to reset this definition as well.

Related commands: TOKENS

NORSX – disable RSX commands

Syntax: NORSX

All RSX commands (i.e. external commands belonging to programs residing in RAM) are
disabled. This is useful when developing RSX software since it is necessary to disable the
commands before re-installing them (otherwise the command chain is made into a loop).

Example:
A loader program for testing RSX software:
10 MEMORY &7FFF
20 |NORSX
30 |RUN,”rsxcode”

PRINTOFF - turn off printer echo

Syntax: PRINTOFF

After issuing the PRINTOFF command screen output is no longer copied to the printer.

Related command: PRINTON

PRINTON - turn on printer echo

Syntax: PRINTON

After issuing the PRINTON command all subsequent screen output is copied to the printer.
In particular it can be used to print the output from commands such as TYPE, LIST, DUMP,
MDUMP, HELP, TOKENS, FIND, VERIFY, VARS, FNS and ARRAYS. Also, the output from
BASIC programs can very easily be sent to the printer, which can be very useful for debugging.

Technical note:

PRINTON works by intercepting TXT WRITE CHAR and TXT OUT ACTION. Control codes
sent to TXT OUT ACTION are correctly intercepted and not sent to the printer.

Related commands: PRINTOFF, SPOOL

REN - rename file

Syntax: REN <new filename> <old filename>

This is the AMSDOS command and so is identical in effect and use to that described in the
Amstrad manual. The command is, however, intercepted and will prompt for parameters in the
usual way, thus allowing easy renaming of files from BASIC.

Note: REN will only be intercepted if UTOPIA is fitted with ROM select number less than 7.

REPLACE - find and replace string in BASIC program

Syntax: REPLACE <old string> <new string>

REPLACE works exactly as FIND to find the old string, and then replaces it by the new
string. Tokenised or ASCII search can be selected, just as for FIND. In the former case both
strings are tokenised. The new string can be shorter, the same length, or longer than the old
string. BASIC variables remain defined, even if the strings are of different lengths.

Care must be taken when replacing single character strings (see note under FIND).
The old string may contain wildcards if the strings are not being tokenised (see FIND).
The search may be restricted to a section of the program (see FIND).

Example:

|REPLACE,”f%”,”flag%”
Renable variable f% to flag%

Related commands: FIND

ROMOFF - turn off all or selected ROM.

Syntax: ROMOFF (<list of rom numbers>)

ROMOFF causes the machine to be reset, initialising only selected background ROMs. If no
parameters are given no background ROMs will be initialised, otherwise all ROMs will be
initialised except those specified. Use the HELP command to determine the ROM numbers.

Warning: ROMOFF will reset the machine completely and destroy memory contents.

Example:

|ROMOFF,5,7
Turn off ROM 5 and the disc ROM.

Related Command: HELP

ROMON – reset machine and turn on only selected ROMs.

Syntax: ROMON (<list of rom numbers>)

This complements ROMOFF – the list of ROMS are those to be initialised. This is most
useful in the form of ‘|ROMON,7’ which turns off all ROMs except the disc ROM – often useful
to be able to run disc software. The expansion ‘RUN”DISC’\ will still be produced by CTRL-
ENTER even if UTOPIA was not initialised.

Warning: ROMON will reset the machine completely and destroy memory contents.

Related Command: HELP, ROMOFF

RUN - load and execute file

Syntax: RUN <filename>

This is roughly equivalent to the BASIC command RUN – it loads a binary file at the address
stored in the header and jumps to the execution address stored in the header (or the start of
the file if there is no execution address). The file must be binary, otherwise the message
‘Cannot run file’ will be displayed and the file will not be loaded.

|RUN has two main advantages over the BASIC command RUN. First, it can be used from
other programs such as PROTEXT and MAXAM. Second, the BASIC command causes a
complete reset on return from the code, so cannot be used to load RSXs etc. |RUN returns
cleanly to the calling program.

Related commands: CALL, LOAD

SAVE - save block of memory as binary file

Syntax: SAVE <filename> <start address> <length>

(<entry addr>) (<load addr>)

Any block of memory can be saved, and is specified as in the BASIC command SAVE by
start address and length. Again as in the BASIC command the fourth parameter is optional and
specifies the entry address for machine code programs. The fifth (optional) parameter is an
addition to BASIC end allows the setting of a load address different to the address from which
the file was saved. This latter option is only available to disc users because the cassette
firmware does not allow the load address to be set.

Note: SAVE closes the output file if there is one.

Related commands: LOAD, SAVEA, VERIFY

SAVEA – save block of memory as ASCII file

Syntax: SAVEA <filename> <start address> <length>

SAVEA is the same as SAVE except that the block of memory is saved as an ASCII file.
Only three parameters apply since the ASCII file has no header in which to store the other
information. This command is provided for use with where only ASCII files may be used, such
as CP/M applications.

Note: SAVEA closes the output file, if there is one.

Related command: SAVE

SPOOL - turn on spooling to file

Syntax: SPOOL <filename>

When the SPOOL command is issued the specified file is opened. All subsequent screen
output is then copied to that file until a SPOOLOFF command is issued.
Warning: the use of some commands cause the output file to be closed and spooling to be
turned off. These include SAVE, SAVE and the BASIC command CAT. If this occurs the
command SPOOLOFF must still be issued before SPOOL can be used again.

Note: SPOOL closes the output file, if there is one.

Related commands: PRINTON, SPOOLOPP

SPOOLOFF - turn off spooling to file

Syntax: SPOOLOFF

The spool output file is closed and screen output is no longer copied to the file. Note that
this command is essential because the last block of the file is not written until this command is
issued.

Related command: SPOOL

STATUS - display status information

Syntax: STATUS

The status information listed is shown by the example below. The memory between 'Start of
program' and 'End of Program' is occupied by the current BASIC program, followed by any
PROTEXT or MAXAM text. The area between 'End of program' and 'First free location' is
occupied by BASIC variables. The area between 'Last free location' and HIMEM is occupied by
BASIC strings.

Example:

|status
Start of program = &0170
End of program = &223C
First free location = &223D
Last free location = &A36F
HIMEM = &A36F
WIDTH setting = 132
SYMBOL AFTER 240
Program size = 8397 bytes
Free memory = 31027 bytes

TOKENS – display expansion strings

Syntax: TOKENS (<buffer size>)

If no parameter is supplied the strings associated with all the expansion tokens are listed.
The tokens 150 to 159 are set by UTOPIA. To set your own definitions (using the BASIC
command KEY) it may be necessary to clear space in the expansion string buffer. To do this
use the command |NOKEYS.

If a parameter is supplied with the |TOKENS command a new expansion string buffer is
created of the specified size, and the UTOPIA expansion strings are initialised.

<buffer size> must be at least 49. If insufficient space is allocated, as many of the expansion
strings as will fit are set up. This provides an alternative to |NOKEYS to allow a program to set
up its own definitions. e.g. |TOKENS,300 provides a 300 byte buffer for expansion strings.

Note: On initialisation UTOPIA causes the expansion tokens 141-149 to be assocated with
keys SHIFT-f1 to SHIFT-f9, and the tokens 150-159 with CTRL-f0 to CTRL-f9. So to define
function keys you need only use the KEY command (and not KEY DEF).

Example:

|tokens
128 0 129 1
130 2 131 3
132 4 133 5
134 6 135 7
136 8 137 9
138 . 139
140 RUN”DISC 141
142 143
144 145
146 147
148 149 |STATUS
150 INK 0,13:INK 1,0:BORDER 10
151 LIST 152 MODE 2
153 CAT 154 |HELP:|HELPR
155 |TOKENS 156 |STATUS
157 |PROTEXT 158 |M,2
159 |ERA,”*.BAK”

Related command: NOKEYS

TYPE - type ASCII file

Syntax: TYPE <filename>

TYPE will read a file from tape or disc and list the contents on the screen. Tab characters
are acted upon, taking tab positions at every eighth column.

Note: TYPE closes the input file if there is one.

U - execute UTOPIA command

Syntax: U <command name> (<command parameters>)

This command is provided for use when another ROM is intercepting a command meant for
the UTOPIA ROM. It simply causes the UTOPIA command to be executed as if the other ROM
were not present.

Example:

|U,“ROMOFF”, 7

Related command: XROM

VARS - display currently defined variables

Syntax: VARS

A complete list of all currently defined variables (excluding arrays) is produced. The
variables are listed in the order: integer variables, real variables, string variables. Integer and
string variables are listed with their current value, Integers being shown in decimal and
hexadecimal. The type of each variable is indicated by the appropriate type marker: %
(integer), ! (real), or $ (string).

Example:

|vars
COUNT% 15 &000F
SCORE% 6003 &3E83
TOTAL!
REPLY$ “yes”

Related commands: ARRAYS, FNS

VERIFY - verify file content.

Syntax: VERIFY <filename> (<address>) (<length>)

The function of VERIFY is to compare the contents of a part of memory with the contents of
a file, and to list all differences between the two. It can be used in three ways:

(i) to verify the current BASIC program. If just a filename is specified that file will be
compared with the current BASIC program.

(ii) to verify a complete file. Enter a filename and a start address. The file will be compared
with the contents of memory starting at that address and continuing to the end of the file.

(iii) to verity a block of memory. Enter a filename, start address and length of memory in
bytes. The complete block of memory will be compared with the file. If the end of the file is
reached before the end of the block of memory a message to that affect is displayed. This
option allows the possibility of verifying just part of a file.

If verification is successful the message “Verification successful” is displayed. It not, the
memory addresses where memory and file differ are listed. MEDIT can he used to examine
those memory locations.

Examples:

1. |VERIFY,”prog”
compare BASIC program with file “prog”.
2. |VERIFY,”mem”,&3000,560
Compare 560 bytes of memory starting at &3000 with the file “mem”.

Related commands: LOAD, SAVE, SAVEA, VTEXT

VERIFY - verify text

Syntax: VTEXT <filename>

VTEXT is a special verify command for users of PROTEXT or MAXAM. The current text in
memory is compared with the file. VTEXT does not list all differences but stops at the first. This
is because it is likely that any difference was caused by text being inserted or deleted, and in
that case most of the subsequent bytes would give an error.

Example:

|VTEXT,”letter”

Related command: VERIFY

XROM - execute command in specified ROM

Syntax: XROM <rom number> <command> (<parameters>)

XROM is provided for use when more than one background ROM has a command of the
same name. When this occurs the command in the lower numbered ROM is normally
executed. XROM allows the command in the higher numbered ROM to be called. Use HELP to
determine the ROM number you require.

XROM may be abbreviated to X.

Example:

|XROM, 5,“CLEAR”

Related command: U

APPENDIX

Memory map – RAM

Address

0 firmware workspace
40 Background ROMs lower workspace area

(not used by Arnor ROMs)
(110) BASIC input buffer
(170) BASIC program area

BASIC variable storage
PROTEXT/MAXAM text area
** free memory **

HIMEM-1 ** free memory if himem altered **
(A2F0) user defined characters
(A2F0) Background ROMs upper workspace

(including UTOPIA workspace – 256 bytes)
AC00 BASIC workspace
B100 firmware workspace
C000 screen memory

Addresses given in brackets are variable - the numbers shown are for a machine with

AMSDOS, UTOPIA, MAXAM and PROTEXT ROMs all initialised.

UTOPIA COMMAND SUMMARY

ACCESS <afn> (P) Set access attributes.
ARRAYS List currently defined arrays
C Calculate value of expression.
CALL <addr> (<a>) (<bc>) (<de>) (<hl>)

Call code routine.
CAT (<drv>) Catalogue files.
CDUMP Character screen dump (any printer)
COPY (<fn>) <fn> copy file (tape or disc)
COPY <drv> <drv> <afn> copy file (disc to disc)
DEDIT <drv> <track> Disc editor.
DELETE <afn> Selective file deletion.
DISCCOPY <drv> <drv> Copy disc.
DISCTEST <drv> Test disc for read errors.
RUMP <fn> Dump file contents.
ERA <afn> Delete file or files.
FIND <str> Find string in BASIC program.
FNS List currently defined functions.

FORMAT <drv> (<form>) Format disc.
GDUMP Graphics screen dump (EPSON compatible printers).
HELP (<rom>) List sideways ROMs or external commands.
HELPR List RSX commands.
INFO <afn> Display information about file or files.
LINK Link BASIC program.
LIST <fn> List ASCII file.
LOAD <fn> (<addr>) Load file.
MDUMP <addr>(<addr>) Memory dump.
MEDIT <addr> Memory editor.
MOVE <line> <line> <line>
 Move BASIC lines.
NOKEYS Clear UTOPIA expansion strings
NORSX Disable RSX commands.
PRINTOFF Turn off printer echo.
PRINTON Turn on printer echo.
REN <fn> <fn> Rename file.
REPLACE <str> <str> Find and replace string in BASIC program.
ROMOFF (<roms>) Turn off all or selected ROMs.
ROMON (<roms>) Turn on selected ROMs.
SAVE <fn> <addr> <len> (<entry>) (<reload>)

Save block of memory as binary file.
SAVEA <fn> <addr> <len> Save block of memory as ASCII file.
SPOOL <fn> Turn on spooling to file.
SPOOLOFF Turn off spooling to file.
STATUS Display status information.
TOKENS Display expansion strings.
TYPE <fn> Type ASCII file.
U <command> Execute UTOPIA command.
VARS List currently defined variables.
VERIFY <fn> (<addr>) (<len>)
 Verify file contents.
VTEXT <fn> Verify text.
X <rom> <command> Abbreviation for XROM.
XROM <rom> <command> Execute command in specified ROM.

Abbreviations:
<fn> … filename
<afn> … ambiguous filename (i.e. allows wildcards * and ?)
<str> … string
<addr> … memory address
<drv> … drive (A or B)
<rom> … ROM number

