
PAGE 1

DES v1. 0

(Desktop Environment System)

PROGRAMMER'S GUIDE

(c) CampurSoft 1994

1: INTRODUCTION

This guide explains how to write programs which use the features of DES, the graphical user interface on ROM
and disc from CampurSoft.

These programs are known as DES Applications; they are run from the DES desktop, using the FILE|RUN command.

DES Applications have to be written in machine code, using an assembler. However, much of your work is
already done for you, as all the input and output routines that you could possibly need are already provided.

The DES routines provide such features as Text output, graphics, Alert Boxes, buttons, icons, pointer
control, text entry, disc routines and list box routines.

It is assumed that you have a fair knowledge of CPC assembly language, as the things discussed in these
instructions aren't for absolute beginners.

If you are writing DES Applications, you should only use the routines outlined in this guide. These routines
are the key to upwards compatability, as they will remain the same in any future updates of the DES ROMs.
There is no other guaranteed method of accessing the DES routines.

Memory usage

In order to provide easy access to the DES routines, DES installs a new jumpblock at &9200 in RAM. The memory
above this address is all reserved, as DES uses it as a workspace.

DES also uses main memory below &3000 as a buffer area, so you can't store any code there. This area is used
as follows:

&0040-&0fff - Screen store for menus and alert boxes
&1000-&2fff - Disc buffer: 8k is needed for the maximum disc
 directory size, which is ROMDOS D20, with 256 files.
 Each entry in the directory requires 32 bytes,
 and 32*256 = 8k.

This leaves main memory from &3000 to &91ff for your program - that's around 25k. The second 64k of the 6128
machines (and upgraded 464s and 664s) is not used, so you can use this for storage as well - a program can
thus access around 89k of memory, with use of bank switching.

The disc version of DES uses RAM banks 4 and 5 - the first two 16k blocks of the extra RAM - so you cannot
use these if you want your program to run with both the disc and ROM versions of DES.

PAGE 2

If you really need some more RAM, you could use the second extra bank - bank 5 - but your program cannot have
an “exit” option, as the DES program manager is stored here. The disc version of DES stores its system
routines in bank 4, so you must never use this bank, unless your program is to be ROM-only.

DES provides two routines to deal with bank switching - one to check whether or not the computer has 128k,
and another to switch the banks.

Click Zones

This is the method which DES uses to detect whereabouts on the screen the pointer was when it was last
“clicked”. The programmer uses DES routines to define rectangular areas of the screen, each one of which is
given a unique number. Up to 30 of these zones can be defined.

Each time you add a click zone, the number will be increased by 1; so, your program sets up three buttons,
and no click zones have been set up already, the first button will be zone number 1, the second will be zone
2, and the third will be zone 3.

2: CREATING APPLICATIONS

Writing a DES Application is just like writing any other assembly program. However. a few simple guides have
to be followed.

(i) Firstly, you'll have to save your object code to a file on disc, as the application has to be run from
within DES. An assembler such as Arnor's Maxam makes this very easy, with the WRITE directive.

(ii) At the start of the program, you need to include a header which tells DES that the program is an
application. The first bytes of the program have to be set up as follows:

db “DES APPLICATION:”
dw <start address>

Substitute the load address of the code for <start address>. For example, if your code starts at &4000, then
the above will become

WRITE “DEMO”

ORG &4000

db “DES APPLICATION:”
dw &4000

.... rest of code

(iii) When DES runs your application, it provides you with a means of returning directly to the DES desktop.
This is actually quite simple - when your program starts, the HL register will contain an address and the C
register will contain a rom number. If you store these values, then you can use them as far address to recall
DES. One method of doing this, which is recommended, is as follows:

PAGE 3

WRITE “DEMO”

ORG &4000

db “DES APPLICATION:”
dw &4000

push bc ; Store rom number
push hl ; Store address
call main_program ; Call main code of application
pop hl ; Retrieve address
pop bc ; Retrieve rom number
jp &001b ; Jump to address HL in rom number C

.mainprogram
.... rest of code....

For the disc version of DES, the rom select number which is passed onto the program will always be &00.

3: SUMMARY OF DES JUMPBLOCK ROUTINES

As previously stated, the DES jumpblock lives at &9200 in main memory. Each jumpblock entry has a unique
name, which indicates the function of the routine. It is advised that you stick to using the names provided
in these instructions, to avoid confusion.

Output/graphical routines:

&9200 PrintChr Displays a single character
&9203 PrintString Displays a string of characters
&9206 Space Displays a space
&9209 BackSpace Performs a back-space
&920c TinyFont Set text to “Tiny” font
&920f DwdFont Set text style to double-width
&9212 DimFont Set text style to dimmed
&9215 InvFont Set text style to inverse mode
&9218 PrintA Output value in A in decimal
&921b PrintHL Output value in HL in decimal
&921e PrintHexA Output value in A in hex
&9221 PrintHexHL Output value in HL in hex
&9224 Locate Set DES cursor position
&9227 CursorOn Displays a cursor at current position
&922a CursorOff Removes cursor from screen
&922d ClearBox Clears an areas of the screen
&9230 FillBox Fills an area of the screen with a value
&9233 InvertBox Inverts colours in an area of the screen
&9236 FileGard Displays a “file card” window
&9239 NormBox Displays a single-lined box
&923c MenuBox Displays a box with a shadow behind it
&923f Window Displays a window
&9242 AlertBox Displays a box with a thick border
&9245 MenuBar Displays a menu bar
&9248 AlertResponse Gets user response from an alert box
&924b Button Displays a pushbutton
&924e RadioButtons Displays a column of radio buttons
&9251 RadioZones Sets up click zones for radio buttons
&9254 CheckBoxes Displays a column of check boxes
&9257 CheckZones Sets up click zones for check boxes
&925a DrawIcon Displays an icon
&925d DrawArrow Displays an up or down arrow
&9260 DrawGraphic Displays a graphic block

PAGE 4

Input routines:

&9263 Mouse Waits for user to select using pointer
&9266 MousePos Returns pointer coordinates
&9269 Wait Waits until all mouse select keys are released
&926c FileName Inputs and validates a filename
&926f InputNumber Inputs or edits a number
&9272 InputString Inputs a string
&9275 EditString Edits an existing string
&9278 StringZone Sets input window for string editing
&927b StringCase Sets automatic upper case conversion
&927e PullMenu Display & select from a pull-down menu
&9281 ClearInput Same as CLEAR INPUT in BASIC 1.1
&9284 ReadChr Reads a single character with flashing cursor

Disc routines:

&9287 FormatDisc Formats a disc to Data/System/ROMDOS
&928a CheckOn Enables advanced disc error checking
&928d CheckOff Disables advanced disc error checking
&9290 CheckAbandon Aborts advanced disc error checking
&9293 ReadSector Reads a sector from disc
&9296 WriteSector Writes a sector to disc
&9299 ScanFormat Scans disc & works out format
&929c LastFormat Returns values for format of last disc scanned
&929f GetDrive Returns current disc drive
&92a2 GetUser Returns current user number
&92a5 SetDrive Sets current disc drive
&92a8 SetUser Sets user number
&92ab GrindOff Stops drive grinding during read error
&92ae GrindOn Restores drive settings after GrindOff
&92bl ScanDir Scans filenames from disc
&92b4 NameAddr Returns address of a name scanned by “ScanDir”
&92b7 PrintName Prints a filename scanned by “ScanDir”
&92ba CentreName Same as “PrintName”, except name is centred

Miscellaneous routines:

&92bd PrinterOnline Checks if printer is on-line
&92c0 C1rZones Clears all click zones from memory
&92c3 RamZones Sets up click zones from a list in memory
&92c6 SetZone Sets up a single click zone
&92c9 ZoneAddr Returns address of “number of zones” byte
&92cc ZoneKeys Set shortcut keys for click zone(s)
&92cf ClearKeys Clears all shorteut keys
&92d2 Ping Performs the error sound
&92d5 ScrAddr Returns screen address for a coordinate
&92d8 NextLine Get address of next screen line down
&92db StoreBox Stores an area of the screen in RAM
&92de RestoreBox Redraws a stored area of the screen
&92el ListPrev Moves list box pointer up by 1 position
&92e4 ListNext Moves list box pointer down by 1 position
&92e7 ListItem Returns current item in list box
&92ea ListSelect Selects list box item under pointer
&92ed ListUp Scroll list box up by 1 position
&92f0 ListDown Scroll list box down by 1 position
&92f3 ListInit Initialise a list box
&92f6 ListDisplay Displays visible part of list box
&92f9 ScrollBar Displays a scroll bar
&92fc RomCommand Calls the “Execute ROM commands” function
&92ff GetPercent Returns a percentage for a value
&9302 SecPercent Returns percentage for sector position
&9305 RetNum Returns string equivalent of a number
&9308 ReadDirSecs Reads in directory sectors from disc
&930b WriteDirSecs Writes directory sectors to disc
&930e CampLogo Displays CampurSoft logo

PAGE 5

&9311 RAMtest Checks if computer has 128k RAM
&9314 RAMbank Switches in extra RAM banks
&9317 PokeName Copies a filename into memory location
&931a SelectDrive Prompts for disc drive A or B
&931d TwoButWin Displays an Ok/Cancel window
&9320 SetMess Enables/disables AMSDOS error messages
&9323 SelectFormat Selects a disc drive and format
&9326 HoldESCbox Displays a box with “Hold ESC to abort” in it
&9329 hESCpercent Displays “x% completed…” in a HoldESCbox
&932c GetBlanker Returns address of screen blanker status byte
&932f CameraVec Called by pointer and flashing cursor routines
&9332 DisplayPointer New pointer display routine
&9335 ClearPointer New pointer removal routine

4: DETAILED DESCRIPTION OF DES JUMPLOCK ROUTINES

&9200 PrintChr

Displays a single character on the screen, and increments the DES screen cursor position.

Entry: A = character to display
Exit: Flags corrupt

Note that as well as the standard characters from CHR$(32) to CHR$(126), there are also some extra
characters, as well as a set of control codes.

Extra characters:
128: CHR$(143) 139: <= symbol
129: Pound sign 140: >= symbol
130: Copyright symbol 141: approx. symbol
131: Up arrow 142: equivalence symbol
132: Down arrow 143: << symbol
133: Left arrow 144: >> symbol
134: Right arrow 145: Tick
135: CHR$(244) 146: Left quote
136: CHR$(245) 147: Right quote
137: CHR$(246) 148: Bullet
138: CHR$(247) 149: Small bullet

(Where CHR$(n) is shown, the character is the same as the built-in CPC character of that number.)

Control codes:
 1: Shortcut key “underline” character: doesn't advance cursor
 4: Dimmed font on
 5: Dimmed font off
 6: Inverse font on
 7: “Bong” warning noise
 8: Backspace, doesn't change display
 9: Forward space, doesn't change display
10: Inverse font off
ll: Double width on
12: Clears screen
14: Double width off
15: Tiny font on
16: Tiny font off
17: Displays “A” or “B”, according to current disc drive

&9203 PrintString

Displays a string of characters and control codes on the screen, using the PrintChr routine.

PAGE 6

Entry: HL = address of string. String is terminated by CHR$(0).
Exit: HL = address of byte after CHR$(0).

AF, BC corrupt

As well as the control codes for the PrintChr routine, the following codes are also supported by PrintString:

18,n,x: Displays CHR$(x) n times.
31,x,y: Sets cursor position to (x,y) - see Locate routine

PAGE 7

&9206 Space

Displays a space character - CHR$(32)

Entry: no conditions
Exit: AF corrupt

&9209 BackSpace

Moves the DES cursor backwards by one character position.

Entry: no conditions
Exit: All registers preserved

&920c TinyFont

Set text to “Tiny” font.

Entry: A=&00 to disable “Tiny” font, non-zero to enable it
Exit: All registers preserved

&920f DwdFont

Set text style to double-width.

Entry: A=&00 to disable double-width font, non-zero to enable it
Exit: All registers preserved

&9212 DimFont

Set text style to dimmed.

Entry: A=&00 to disable dimmed font, non-zero to enable it
Exit: All registers preserved

&9215 InvFont

Set text style to inverse mode.

Entry: A=&00 to disable inverse video, non-zero to enable it
Exit: All registers preserved

&9218 PrintA

Outputs a byte in Decimal, with no leading zeros.

Entry: A = value to display
Exit: All registers preserved

&921b PrintHL

Outputs a word in decimal, with no leading zeros.

Entry: HL = value to display
Exit: All registers preserved

PAGE 8

&921e PrintHexA

Outputs a byte in hexadecimal.

Entry: A = value to display
Exit: All registers preserved

&9221 PrintHexHL

Outputs a word in hexadecimal.

Entry: HL = value to display
Exit: All registers preserved

&9224 Locate

Sets the DES cursor position.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
Exit: All registers preserved

&9227 CursorOn

Displays a cursor block at the current DES cursor position.

Entry: no conditions
Exit: All registers preserved

&922a CursorOff

Removes the cursor block from the screen.

Entry: no conditions
Exit: All registers preserved

&922d ClearBox

Clears a rectangular area of the screen.

Entry: H = X-coordinate (0-79)

L = Y-coordinate (0-199)
 D = Width of area (in characters)
 E = Height of area (in lines)
Exit: All registers preserved

&9230 FillBox

Fills a rectangular area of the screen with a given byte.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 D = Width of area (in characters)
 E = Height of area (in lines)
 A = Byte to fill with
Exit: All registers preserved

PAGE 9

&9233 InvertBox

Inverts colours in a rectangular area of the screen.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 D = Width of area (in characters)
 E = Height of area (in lines)
Exit: All registers preserved

&9236 FileCard

Displays a “file card” window.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 D = Width of window (in characters)
 E = Height of window (in lines)
Exit: DES cursor position is set to start of window status bar
 All registers preserved

&9239 NormBox

Displays a single-lined box.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 D = Width of box (in characters)
 E = Height of box (in lines)
Exit: All registers preserved

&923c MenuBox

Displays a box with a shadow behind it.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 D = Width of box (in characters)
 E = Height of box (in lines)
Exit: All registers preserved

&923f Window

Displays a window.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 D = Width of box (in characters)
 E = Height of box (in lines)
Exit: DES cursor position is set to start of window title bar
 All registers preserved

&9242 AlertBox

Displays a box with a thick border.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 D = Width of box (in characters)
 E = Height of box (in lines)
Exit: All registers preserved

PAGE 10

&9245 MenuBar

Displays a menu bar at the top of the screen.

Entry: HL = Address of menu bar text, terminated by CHR$(0)
Exit: All registers preserved

&9248 AlertResponse

Returns user response from an alert box.

Entry: HL = Address of alert text, terminated by CHR$(0). All control

 codes from PrintChr routine still work, plus CHR$(13)
 takes a new line in the alert message.
A = icon number and number of buttons:
 bits 0-6 contain icon number

 - set bit 7 to give a single button 110k11 response
 - clear bit 7 for a two-button response,
 and set DE & BC = Data for left & right buttons
 (Data consists of INKEY number,string,&00)
Exit: AF corrupt
 For two-buttoned alert box, left button returns carry set,
 right button returns no carry

&924b Button

Displays a pushbutton, and sets it up as the next click zone.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 B = Width of button (in characters)
 DE = address of button text, terminated by CHR$(0)
Exit: All registers preserved

&924e RadioButtons

Displays a column of radio buttons.

Entry: H = X-coordinate of column (0-79)
 L = Y-coordinate of top button in column (0-199)
 B = Number of buttons in column
 C = Distance between tops of two consecutive buttons
 A = Button to set
Exit: All registers preserved

&9251 RadioZones

Sets up click zones for a column of radio buttons.

Entry: H = X-coordinate of column (0-79)
 L = Y-coordinate of top button in column (0~199)
 B = Number of buttons in column
 C = Distance between tops of two consecutive buttons
Exit: All registers preserved

PAGE 11

&9254 CheckBoxes

Displays a column of check boxes.

Entry: H = X-coordinate of column (0-79)
 L = Y-coordinate of top button in column (0-199)
 B = Number of buttons in column
 C = Distance between tops of two consecutive buttons
 DE = Status table - one entry for each check box,
 zero to clear, non-zero to set.

Exit: All registers preserved

&9257 CheckZones

Sets up click zones for a column of check boxes.

Entry: H = X-coordinate of column (0-79)
 L = Y-coordinate of top button in column (0-199)
 B = Number of buttons in column
 C = Distance between tops of two consecutive buttons

Exit: All registers preserved

&925a DrawIcon

Displays a DES icon on the screen.

Entry: D = X-coordinate (0-79)
 E = Y-coordinate (0-199)
 A = icon number
Exit: All registers preserved

Icon numbers:

1: Query 5: Basic 9: Folder
2: Warning 6: Binary 10: Waste bin
3: Printer 7: Document ll: Open waste bin
4: ROM 8: Mouse 12: Disc

If the icon number is not one of the above, then the icon data pointed at address in HL will be displayed.
The icon data is standard MODE 2 sprite data, of width 4 bytes and height 16 bytes.

&925d DrawArrow

Displays an up or down arrow.

Entry: H = X-coordinate (0-79)
 L = Y-coordinate (0-199)
 A = &00 for up arrow, non-zero for down arrow
Exit: All registers preserved

&9260 DrawGraphic

Displays a graphic block on the screen.

Entry: D = X-coordinate (0-79)
 E = Y-coordinate (0-199)
 B = Width of graphic (in bytes)
 C = Height of graphic (in lines)
 HL Address of graphic data
Exit: All registers preserved

The graphic data is standard MODE 2 sprite data.

PAGE 12

&9263 Mouse

Waits for the user to make a selection using the pointer.

Entry: no conditions
Exit: B = Character X-coordinate (0-79)
 C = Character Y-coordinate (0-199)
 DE = Graphics X-coordinate (0-638)
 HL = Graphics Y-coordinate (0-398)
 A = Click zone number (&00 if user hasn't clicked on a zone)
 IX, IY, flags corrupt

&9266 MousePos

Returns pointer coordinates.

Entry: no conditions
Exit: B = Character X-coordinate (0-79)
 C = Character Y-coordinate (0-199)
 DE = Graphics X-coordinate (0~638)
 HL = Graphics Y-coordinate (0-398)
 A = Click zone number (&00 if user hasn't clicked on a zone)
 flags corrupt

&9269 Wait

Waits until the user has released all “click” keys - i.e. SPACE, ENTER and RETURN.

Entry: no conditions
Exit: All registers preserved

&926c FileName

Inputs and validates a filename. The filename has to be a valid AMSDOS filename, otherwise an error message
is displayed, and the name has to be changed.

Entry: D = X-coordinate for input (0-79)
 E = Y-coordinate for input (0-199)
 HL = Address to store filename at
Exit: Carry set if ESC pressed, no carry if RETURN pressed
 All other registers preserved

&926f InputNumber

Inputs or edits a number.

Entry: H = X-coordinate for input (0-79)
 L = Y-coordinate for input (0-199)
 BC = Minimum permissable value
 DE = Maximum permissable value
 A = Maximum number of digits allowed
 No carry -> enter new nunber
 Carry set -> edits number in IX register
Exit: HL = Number typed
 Carry set if ESC pressed, no carry if RETURN pressed
 All other registers preserved
 PAGE 12

PAGE 13

&9272 InputString

Inputs a string.

Entry: D = X-coordinate for input (0-79)
 E = Y-coordinate for input (0-199)
 HL = Address to store string at
 C = Maximum number of characters allowed
 No carry -> use built-in validation
 Carry set -> calls routine at address in IX for each keypress
Exit: Carry set if ESC pressed, no carry if RETURN pressed
 C = Length of string
 B corrupt
 All other registers preserved

&9275 EditString

Edits an existing string.

Entry and exit conditions are the same as InputString (see above).

&9278 StringZone

Sets input window for string editting.

Entry: D = X-coordinate of left of window
 E = X-coordinate of right of window
Exit: All registers preserved

PAGE 14

&927b StringCase

Sets automatic upper case conversion.

Entry: A = &00 - allow all input characters
 A = non-zero - convert characters into upper case
Exit: All registers preserved

&927e PullMenu

Display & select from a pull-down menu.

Entry: HL = Address of menu option data
 DE = Address of invalid option data
Exit: BC, DE, HL are the same as the Mouse routine
 No carry -> Selected from menu, A = Menu option number
 Carry set -> Selected outside menu, A = Click zone number
 If A = &FF, then the user has pressed ESC.
 IX, IY corrupt.

Menu option data:

Byte 0: X-Coordinate of left of menu (0-79)
Byte 1: Y-Coordinate of top of menu (0-199)
Byte 2: Width of menu (in characters)
Byte 3: Number of options in menu

... followed by a string for each menu option, each string being terminated by CHR$(0). If you include the
CHR$(1) control code in an option string, the next character in the string will be taken as the shortcut key
for that option.

If a string is defined as simply a dash (-) character, followed by CHR$(0), then a menu seperator bar will be
displayed at that position.

Invalid option data:

This tells DES which menu options should be dimmed, i.e. unselectable. If all options are selectable, then
this data is simply a zero byte.

If there are dimmed options, then this data will consist of the number of each dimmed option; the data is
terminated by a zero byte. So, if options 1,3 and 4 are to be dimmed, point the DE register to a table
containing the bytes 1,3,4,0.

&9281 ClearInput

Same as CLEAR INPUT in Basic 1.1

Entry: no conditions
Exit: All registers preserved

&9284 ReadChr

Reads a single character from the keyboard, with flashing cursor. The cursor will be displayed at the current
DES screen cursor position. The character will be converted into upper case, if the StringCase routine has
been set for this.

Entry: no conditions
Exit: A = Character typed
 HL, DE, BC corrupt

PAGE 15

&9287 FormatDisc

Formats a disc to Data, System or ROMDOS formats. The ROMDOS formats which are supported are D1, D10, D2,
D20.

Entry: A = Format number: 1: Data 2: Vendor

3: D1 4: D10
 5: D2 6: D20
 HL = Address of 2204-byte buffer for screen storage. If this
 value is set to zero, then the screen won't be stored.
Exit: All registers corrupt

&928a CheckOn

Enables advanced disc error checking, replacing the AMSDOS error messages. Whilst this is enabled, any text
output using the standard &BB5A printing routine will be checked to see if it is an error message. If a call
to &BB06 is made, then DES recognises it as a “Retry, Ignore or Cancel?” error, and displays a “Retry/Cancel”
alert box. As a result, you can't use the &BB06 or &BB5A calls when the error checking is enabled.

Entry: No conditions
Exit: AF corrupt

&928d CheckOff

Disables advanced disc error checking, set up by the CheckOn routine. If an error which is not of the “Retry,
Ignore or Cancel?” type, such as “File does not exist”, then an “Ok” alert box is displayed, informing you of
the error.

Entry: No conditions
Exit: All registers preserved

&9290 CheckAbandon

Aborts advanced disc error checking, without reporting any error messages which have been detected.

Entry: No conditions
Exit: All registers preserved

&9293 ReadSector

Reads a sector from disc. This is simply a convenient way of calling the AMSDOS routine.

Entry: HL = Address of 512-byte buffer to read into
 E = Drive number (&00 for A, &Ol for B)
 D = Track number
 C = Sector number
Exit: DE, BC, HL, IX, IY preserved
 Carry set -> sector read Ok, A = 0
 No carry -> sector not read, A = error code, HL corrupt

PAGE 16

&9296 WriteSector

Writes a sector to disc. Like ReadSector, this is just an easy way of calling the AMSDOS routine.

Entry: HL = Address of 512-byte buffer to write from
 E = Drive number (&00 for A, &Ol for B)
 D = Track number
 C = Sector number
Exit: DE, BC, HL, IX, IY preserved
 Carry set -> sector read Ok, A = 0
 No carry -> sector not read, A = error code, HL corrupt

&9299 ScanFormat

Scans a disc and identifies the format. Note that this routine calls the CheckOn and CheckOff routines, so if
you've already called CheckOn, you'll need to call CheckOff before calling ScanFormat.

Entry: Carry set -> Report all errors
 No carry -> Don't report a Disc read error

Exit: A = Format number: 1: Data 2: Vendor
 3: D1 4: D10

 5: D2 6: D20
 7: PCW in A 8: PCW in B

 If A = 0, then the disc format wasn't recognised.
 If A = &FF, then a read error occurred, indicating that the disc was not formatted correctly,
 but no error message was displayed.
 All other registers preserved

&929c LastFormat

Returns details about the format of the last disc tested by the ScanFormat routine.

Entry: no conditions
Exit: A = number of tracks on disc
 B = number of sectors in directory
 C = first sector number
 D = track number of directory
 E = number of sectors per track
 HL = maximum K available on disc
 IX, IY preserved

&929f GetDrive

Returns current disc drive.

Entry: No conditions
Exit: E = &00 if current drive is A
 E = &Ol if current drive is B
 All other registers preserved

&92a2 GetUser

Returns current user number.

Entry: no condtions
Exit: A = Current user number

PAGE 17

&92a5 SetDrive

Sets current disc drive.

Entry: E = &00 to set current drive to A
 E = &0l to set current drive to B
Exit: All registers preserved

&92a8 SetUser

Sets current user number. Although it is possible to set any user number, from 0-255, AMSDOS and DES will
only recognise users 0-15.

Entry: A = user number
Exit: All registers preserved

&92ab GrindOff

Stops disc drive grinding during read error, so error message is displayed more quickly.

Entry: no conditions
Exit: All registers preserved

&92ae GrindOn

Restores drive settings altered by GrindOff.

Entry: no conditions
Exit: All registers preserved

&92bl ScanDir

Scans filenames from disc in current drive. These filenames are stored in a buffer, and can be displayed or
referenced later. Note that this routine calls the CheckOn and CheckOff routines, so if you've already called
CheckOn, you'll need to call CheckOff before calling ScanFormat.

Entry: A = Scan type: set bit 0 to include hidden files
 set bit 1 to reset all characters to < 128
 DE = Address of 3-character extension of files to scan
 If the extension begins with a “*”, all files are scanned.
 Note that the “?” wildcard character is NOT supported.
Exit: A = number of files scanned
 HL = number of K free on disc
 Carry set -> disc read Ok
 No carry -> error occurred whilst reading disc
 All other registers corrupt

&92b4 NameAddr

Returns address in memory of a name scanned by ScanDir.

Entry: A = filename number
Exit: HL = address of filename
 Flags corrupt, all other registers preserved

PAGE 18

&92B7 PrintName

Displays a filename, scanned by ScanDir, at the current DES cursor position.

Entry: A = filename number
Exit: All registers preserved

&92ba CentreName

Displays a filename, scanned by ScanDir, at the current DES cursor position. The name will be centred within
the 12-character filename length, so, for example, it can be displayed centrally under an icon.

Entry: A = filename number
Exit: All registers preserved

&92bd PrinterOnline

Checks if the printer is on-line. If it isn't then an alert message will be displayed, and the user can retry
the test if they wish.

Entry: No conditions
Exit: Carry set -> Printer is on-line
 No carry -> Printer is not on-line
 All other registers preserved

&92c0 C1rZones

Clears all mouse click zones from memory.

Entry: no conditions
Exit: All registers preserved

&92c3 RamZones

Sets up click zones from a list in RAM. The list consists of xl,yl,x2,y2 for each click zone.

Entry: HL = Address of click zone data list
 B = number of zones to initialise
Exit: All registers preserved

&92c6 SetZone

Sets up a single click zone.

Entry: H = X-Coordinate of left of zone (0-79)
 L = Y-Coordinate of top of zone (0-199)
 D = X-Coordinate of right of zone (0-79)
 E = Y-Coordinate of bottom of zone (0-199)
Exit: HL, DE corrupt

All other registers preserved

PAGE 19

&92C9 ZoneAddr

Returns the address where the “number of zones” counter is stored.

Entry: no conditions
Exit: HL = Address of “number of zones” counter
 All other registers preserved

&92ce ZoneKeys

Set up shortcut keys for a number of click zones.

Entry: HL = Address of key data list (list of: key number, zone ...)
 B = Number of keys to set up

Exit: All registers preserved

&92cf ClearKeys

Clears all shortcut keys set up using the ZoneKeys routine.

Entry: no conditions
Exit: All registers preserved

&92d2 Ping

Performs the error “bong” sound.

Entry: no conditions
Exit: All registers preserved

&92d5 ScrAddr

Returns the screen address for a coordinate.

Entry: H = X-Coordinate (0-79)
 L = Y-Coordinate (0-199)
Exit: HL = Screen address of coordinate
 All other registers preserved

&92d8 NextLine

Get address of the next screen line.

Entry: HL = Address of current screen line
Exit: HL = Screen address of next screen line
 All other registers preserved

&92db StoreBox

Stores an area of the screen in RAM. Note that the buffer for storing the screen area has to be at least
(Width*Height)+4 bytes long.

Entry: H = X-Coordinate (0-79)
 L = Y-Coordinate (0-199)
 D = Width of area (in characters)
 E = Height of area (in lines)
 BC = Address of buffer to store screen in
Exit: All registers preserved

PAGE 20

&92de RestoreBox

Redraws an area of the screen, which was stored using StoreBox.

Entry: BC = Address of screen storage buffer
Exit: All registers preserved

&92el ListPrev

Moves list box pointer up by 1 position.

Entry: IX = Address of 9-byte status buffer
Exit: All registers preserved

&92e4 ListNext

Moves list box pointer down by 1 position.

Entry: IX = Address of 9-byte status buffer
Exit: All registers preserved

PAGE 21

&92e7 ListItem

Returns currently selected string in list box.

Entry: IX = Address of 9-byte status buffer
Exit: HL = Address of string
 A = String number
 All other registers preserved

&92ea ListSelect

Selects list box item currently under pointer.

Entry: IX = Address of 9-byte status buffer
Exit: All registers preserved

&92ed ListUp

Scrolls list box up by 1 position.

Entry: IX = Address of 9-byte status buffer
Exit: All registers preserved

&92f0 ListDown

Scrolls list box down by 1 position.

Entry: IX = Address of 9-byte status buffer
Exit: All registers preserved

&92f3 ListInit

Initialises and displays a list box.

Entry: IX = Address of 9-byte status buffer
 A = Number of entries in list
 B = Width of list box (in characters)
 C = Number of items visible at once
 H = X-Coordinate of list box (0-79)
 L = Y-Coordinate of list box (0-199)
 DE = list data
Exit: All registers preserved

&92f6 ListDisplay

Displays the currently visible part of a list box.

Entry: IX = Address of 9-byte status buffer
Exit: All registers preserved

&92f9 ScrollBar

Displays a scroll bar.

Entry: H = X-Coordinate (0-79)
 L = Y-Coordinate (0-199)
 B = Current item number
 C = Total number of items
 D = Number of items displayed at once
 E = Height of scroll bar (in lines)
Exit: All registers preserved

PAGE 22

&92fc RomCommand

Calls the “Execute ROM commands” function, as used by the ROM icon in the DES desktop. Note that this routine
wipes most of the main memory, so any program in RAM will be lost; as a result, this is only really useful
when being called from another ROM.

Entry: no conditions
Exit: All registers preserved

&92ff GetPercent

Returns a percentage, i.e. (current value / maximum value) * 100.

Entry: DE = Current value
 HL = Maximum value
Exit: A = percentage (0-100)
 All other registers preserved

&9302 SecPercent

Returns percentage for a position within a disc.

Entry: D = Track number
Exit: A = percentage (0-100)
 All other registers preserved

&9305 RetNum

Converts a number to a string.

Entry: HL = Number to convert
Exit: HL = Address of string produced by conversion
 All other registers preserved

&9308 ReadDirSecs

Reads in the directory sectors from disc in current drive. Note that this routine calls the CheckOn and
CheckOff routines, so if you've already called CheckOn, you'll need to call CheekOff before calling
ReadDirSecs.

Entry: HL = Address of an Sk (&2000 byte) buffer
Exit: All registers (except IX & IY) corrupt
 Carry set -> Directory read Ok
 No carry -> error whilst reading disc

&930b WriteDirSecs

Writes directory sectors to disc in current drive. Note that this routine calls the CheckOn and CheckOff
routines, so if you've already called CheckOn, you'll need to call CheckOff before calling Wri teDirSecs.

Entry: HL = Address of directory buffer
Exit: All registers (except IX & IY) corrupt
 Carry set -> Directory written Ok
 No carry -> error whilst writing to disc

PAGE 23

&930e CampLogo

Displays the CampurSoft logo on the screen.

Entry: D = X-Coordinate (0-79)

E = Y-Coordinate (0-199)
Exit: All registers (except HL & BC) preserved

&9311 RAMtest

Checks if the computer has 128k RAM.

Entry: no conditions
Exit: Zero flag set -> 128k available
 Zero flag not set -> Extra 64k not available

&9314 RAMbank

Switches in RAM banks from the extra 64k to &4000 in main RAM.

Entry: A = 1, 2, 3 or 4 -> switches in extra RAM bank 1-4
 A = 0 -> switches back to “normal” RAM.

Exit: All registers preserved

&9317 PokeName

Copies a filename (read in by ScanDir) into a memory location. Could be used, for example, to display a
filename in an alert box.

Entry: A = filename number
 DE = Address of 12-byte buffer to load the name into
Exit: All registers preserved

&931a SelectDrive

Asks user to select either drive A or drive B, using radio buttons.

Entry: HL = Address of window title string, terminated by CHR$(0)
 (This takes the same format as PrintString)
Exit: A = &00 -> drive A selected
 A = &0l -> drive B selected
 A = &FF -> “Cancel” selected
 Flags corrupt, all other registers preserved

&931d TwoButWin

Displays a window with “Ok” and “Cancel” buttons in it. “Ok” is set up as click zone number 1, and “Cancel”
is click zone 2. The screen area which the window is displayed over is saved at address &F0 in RAM.

Entry: HL = Address of window text, terminated by CHR$(0)
 (This takes the same format as PrintString)
Exit: AF, BC, DE, HL corrupt

PAGE 24

&9320 Setmess

Enable or disable AMSDOS error messages, reducing them to a simple “Bad command” error.

Entry: A = &00 to enable error messages
 A = &FF to disable error messages
Exit: A = previous state
 All other registers preserved

&9323 SelectFormat

Selects a disc drive and format, using a window, radio buttons and a list box - the same as DISC:FORMAT on
the DES desktop.

Entry: no conditions
Exit: No carry -> User has selected “Cancel”
 Carry set -> User has selected “Format”:
 A = Format number: 1: Data 2: Vendor 3: D1

4: D10 5: D2 6:D20
All registers (except IY) corrupt

&9326 HoldESCbox

Displays a box with a “Hold ESC to abort” message in it.

Entry: no conditions
Exit: All registers preserved

&9329 hESCpercent

Displays a percentage completed message in a HoldESCbox.

Entry: A = Percentage to display
Exit: All registers preserved

&932c GetBlanker

Returns the address of the screen blanker status byte. Setting the value at this address to zero will disable
the screen blanker, nonzero will enable it.

Entry: no conditions
Exit: HL = address of screen blanker status byte
 All other registers preserved

&932f CameraVec

This vector is called by pointer and flashing cursor routines. You have to make sure that the registers are
all preserved, as they may contain values used by the routines.

PAGE 25

&9332 DisplayPointer
&9335 ClearPointer

These two routines are vectors which can be patched to replace the DES on-screen pointer with one of your own
choosing. This could be used, for example, for drawing rubber-band lines in an art program.

Initially, the two routines contain only RET instructions, and the standard DES pointer is used. However, if
you patch them with a jump to your own routine, a different pointer can be displayed.

Simply poke the two addresses with JMP xxxx instructions, and your routine will be called instead. DES will
enter your routine with DE=graphics X coordinate and HL=graphics Y coordinate of the pointer. Your routine
can corrupt all registers.

DisplayPointer is called by DES to display the pointer, and ClearPointer is called to clear the pointer from
the screen.

To return to the standard DES pointer, simply poke both addresses with RET (&cg) instructions.

5: USING LIST BOXES

In all of the DES list box routines, a 9-byte buffer is required for each list box. The contents of this
buffer are as follows:

Byte 0: Width of list box (in characters)
Byte 1: Number of entries in list
Byte 2: Number of entries displayed at once
Bytes 3,4: Address of list box strings
Byte 5: X-coordinate of list box (0~79)
Byte 6: Y-coordinate of list box (0~199)
Byte 7: Top visible item in list
Byte 8: Currently selected item

When a list box is set up, using ListInit, three click zones are added. These are the list area, the top
arrow in the scroll bar, and the bottom arrow in the scroll bar.

The control routine is something like:

.loop call wait call mouse

cp l:call z,ListSelect:jr z,loop
cp 2:call z,ListUp:jr z,loop
cp 3:call z,ListDown:jr z,loop
.... rest of code

To get the keyboard shortcut keys, you'll need to define two “impossible” keyboard equivalents - for example,
assign key f8 to zone 100 and key f5 to zone 101. You'll never be able to select these zones using the
pointer. Add the following to your code:

cp 100:call z,ListPrev:jr z,loop
cp 101:call z,ListNext:jr z,loop
.... rest of code

PAGE 26

Note that it is possible to have more than one list box on the screen at once. In fact, you could probably
have as many as nine, bearing in mind that 3 click zones are needed for each list box, and you'll need a
number of click zones for buttons outside the list boxes. All you have to do is point IX to a different
9-byte buffer, when you're calling the routines. This technique was used in the RomCommand routine and in
FILE:DES SETUP on the DES desktop.

If you experience any difficulty writing DES Application programs, you can contact DES's programmer at the
following address:

Michael Beckett
11 Steeple Gardens
Antrim
Co. Antrim
BT41 1BW

Telephone 0849 463 786 Saturday & Sunday 7.30pm - 10.00pm ONLY.

Please note that CampurSoft is interested in marketing third party DES applications that pass our quality
standards. For more information on this subject write to the address at the front of this manual.

